g1t

There’s more than one way to skin a cat*

Why do we want Version Control?

Mame

Archiv
¢ 2016-10-28_10-34-06 festo_hima_zenon_v1_new.zip
2016-10-28_festo_zenon_save.zip

¢ 2016-10-28_festo_zenon_save THRS.zip

2016-11-03_13-41-539_festo_hima_zenon_Namur-RC.zip

¢ Everybody benefits from a version control system (vcs)
& git 1s the most common vsc
& git 1s finally standard at Festo

& git 1s fun and there is always something new to learn!

What will we look at?

& Basics

& Repositories
Commits
Branches
Rebase or merge

What to do if it goes wrong

ORI Fi0> [0N -

Do’s, Don’ts

& Interactive live session — let’s play together

Basics — the repository

¢ Repository = Database of changes
¢ How to create a repository:

$ cd my/project/directory

$ git init my/project/

& Repository: git’s files — do not edit! .git

¢ Working Copy: your files <some_file>

e

The repository — Cloning or “Forking”

¢ Clone an existing ‘remote’ repository —
& Creates an exact copy of the repository
¢ Can evolve independently — “forking” clon

$ cd my/projects/

$ git clone https://adegit@l.de.festo.net/someproject =
$ cd someproject —
$ git remote -v

originmy https://adegit@l.de.festo.net/someproject(fetch)

origin https://adegit@l.de.festo.net/someproject(push)

—> The normal ‘corporate’ way

The repository — No single source of truth

& Distributed Version Control System
—> all repos are equally good
& Alpha was “forked”

— Changes are not synced to origin

D T

—> It all works because of a common history

The repository — connecting a repository

& Dorothy wants to get changes from Bob

origin https://adegit@l.de.festo.net/someproject(push)
bob http://bob.com/repos/someproject (fetch)
bob http://bob.com/repos/someproject (push)

$ git remote add bob https://bob.com/repos/someproject
$ git remote -v
origin https://adegit@l.de.festo.net/someproject(fetch)
- Bob

A

A

- When you join several repositories -

The git life-cycle - overview

& Create or clone a repository

& Change files “working copy”

& Prepare changes to be committed — add to “staging’

& Commit changes — add to repository

& Publish commits — push to remote

git add <filel>

)

staging

\

Remote
github.com/foo/bar.git

git clon

N

%

Repository
(-git)

(((

/“

git commit

-m “some description”

45}

it push

Basics — what 1s the status

& Get information about the current state of your working copy and repository

$ git status
On branch foo
Changes to be committed:
(use "git restore --staged <file>...
modified: Makefile

to unstage)

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: pois.c

Untracked files:
(use "git add <file>...

to include in what will be committed)

Basics — staging

¢ Saving work to repository 1s a two-step process
& Add things to staging $ git add <path>
& Looks like adding a file but in fact only the current diff (untracked files are added fully)

& Add individual parts of a file — you want a tool for this!
$ git add -i

& Editing a file after ‘git add’ will not include new edits in commit

—> Use staging to create clean, atomic commits

Basics — the commuit®

¢ Something binding and fixed for eternity

& git commit saves staged changes to repository

& Needs a “commit message” = explain what has changed
$ git commit -m “some mAssaGe” 9h763% basbmttmAsmaGeage

& Creates a unique “hash” —e.g. 9b7688fb

¢ You can edit — “amend” last commit — break the promise!

$ git commit --amend -m “a better message”

- Commit often
—> Split larger changes in small coherent commits (use staging!)

*Commit [en] = festlegen, verpflichten [de]

The Commit-History

& A line of development "DAG’ (directed acyclic graph) @ 9b7688fb (HEAD)
& Consists of commits identified by a hash 6137ba2f (HEAD)
¢ HEAD pointer moves 9908a501 (HEAD)

¢ What can you do with a history?
& Compare what has changed
¢ You can time-travel!

¢ Undo changes & Rewrite history

Commuit History — What has changed

& Difference between last commit (HEAD) now (current working copy)

$ git diff

index 1200e8e..1f69alf 100644
--- a/helm/values.yaml

+++ b/helm/values.yaml

@@ -11,7 +11,7 @@ image:

¢ What happened in a specific commit
$ git show 6137ba2f30f
& Difference between now and 2 arbitrary commits for a given file

$ git diff 6137ba2f30f 9908a5015cadb -- Makefile

—> The diff shown is what happened from first to second reference

Commit History - Time travel

& Just check out a commit from the past

& Puts your working copy in the state of this commit (untracked files remain)

$ git checkout 9908a5015calb
Note: switching to '9908a5015ca@b2545b5eedbef721980d8775ab33".

You are in 'detached HEAD' state. You can look around, make
experimental changes and commit them, and you can discard any

commits you make in this state without impacting any branches
by switching back to a branch.

Don’t panic — it 1s git's way to tell you that you are not at a named 'branch’

—> Useful for exploring another solution

Commit History — Selective Time travel

& Just check out a file version of commit from the past

$ git checkout 6137ba2 -- Makefile
$ git status
On branch develop
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
modified: Makefile

- Recover deleted / changed files form the repository

Commit History — Undo and rewrite history

A Do NOT do this in public! — Remember you committed to the changes

& Soft reset’
& keep changes to the file(s) — as is on HEAD

¢ Drop all intermediate commits between HEAD and reference (6137ba2)

$ git reset 6137ba2 Ib768<Th

- Great for creating a clean commit history 6137ba2f = HEAD
a —

¢ Hard reset 9908a501

¢ Discard all changes and commits since reference (6137ba2)
$ git reset --hard 6137ba2

—> Acts like checkout but erases history

Branches

& Is a named for a line of commits — meaningful names!

& All branches have names - first branch is called “master”

(develop)
& Name moves along with commits (name points to latest)
& “branch-point” can be any commit
(master) (test2)
& Can be deleted, renamed, merged and moved around (test3)
(foo)
(mytest)

—> A great thing, elementary to git

Branches — Switching & Creating

¢ ‘HEAD’ moves — working copy content follows

$ git checkout develop d3cafe (develop)

® Create a new branch on a commit
(test)

$ git checkout -b test 9908a501 ‘\ 6137ba2f (master)

& Create a new branch on a commit and move HEAD 9908a501 (test)

$ git checkout -B test 9908a501

$ git commit ..

Branches — Deleting

¢ Delete a local branch

$ git branch -d test2

(develop)
& Git will warn 1if the branch 1s not merged
error: The branch ‘test2' is not fully merged.
If.you are sure you want to delete it, run (master) (test2)
'git branch -D foo'. CEasits’)
& No danger in deleting ‘mytest’ - its just a label (foo0)

¢ Delete a public/remote branch

$ git push -d origin test2 (mytest)

Branches — Merging

& Checkout the one to keep, Merge the other one

$ git checkout master

$ git merge develop (master) Merge commit

' : d 1
& Git resolves merges automatically (works pretty well) (develop)

& If two branches edit the same lines you get a Merge Conflict (master)

$ git merge test3 (test3)

& Check if you can merge
$ git merge --no-ff --no-commit test3

Merge Conflicts

& Use a manual merge-tool (kdiff3, meld, beyondcompare....)

$ git mergetool

¢ What if you can’t merge?
$ git merge --abort

¢ What if you created a really bad merge?

$ git reset --hard <commit_before _merge>

¢ How to avoid merge conflicts for your colleagues?

& Spoiler: you will have to resolve the merge conflict:

$ git checkout test3

$ git merge master (+ resolve conflicts)
$ git checkout master

$ git merge test3

Branches - Rebase

& What if we create a single line of commits?

(THRS/develop)
—> Put your development on top

i3cat
$ git checkout develop (master) D=8 (Tioylo s o)

$ git rebase origin/master deada2f d34dc?2

¢ Can go wrong — use a merge tool 6137ba2f

& If it really goes wrong, start over:

$ git rebase --abort

A Rewrites History — make sure others don’t depend on it!

Rebase to clean up

& You have many work-in-progress commits (THRS/fancy-feature)
\ . . Fixed broken test
¢ You want one clean patch to make it easy for integration ®
® Choose and rephrase your commit @Does still not compile

$ git rebase -i @rriday, close of business

(THRS/fancy-feature) @ Féattypoansmogrify tests

Or the hard way — recreate all your commits

/‘Sbartt keatsmegrify
$ git reset --soft master master)

- Please clean up your commits, it’s easier to find problems later

Basics — remote branches

: repository
& Publish your changes to a remote sefver—

$ git push (origin (HEAD
repository What?

& Update local repository (not working copy)
$ git fetch --all

® What branches exist on remote?
$ git branch -r

bob/mytest

bob/foo

origin/HEAD -> origin/foo
origin/develop

origin/foo

origin/master

Remote branches - Pull

& QGetting changes from a tracking branch
$ git pull

& Will merge your working copy

$ git pull
There is no tracking information for the current branch.
Please specify which branch you want to merge with.

[.]

¢ Happens to me all the time... when you push your branch and pull again

& Set tracking information

git branch -u origin/mytest

OMG - I broke the repo!

¢ Relax — most likely you didn’t break the repo, you only broke the working copy

$ git reset --hard <last _good commit>

& I deleted a file some time ago — then check it out

$ git checkout <last good_commit|branch> -- <filename>

¢ I deleted a branch

$ git reflog
$ git checkout <hash from reflog>

Qi O SOOI

Do’s & Don’ts

Do not publish all commits — create one clean patch (rebase -1i)
Do not change public commits other people use (includes rebase)
Do not --amend on master after push!

Do not base your work on temporary work of others

Do not push to others’ branches

Do’s & Don’ts

¢ Do Branch often, Commit more often
¢ Do read google and manuals
git <command> -h

https://git-scm.com/

https://learngitbranching.is.org/

&
&
& https://github.com/k88hudson/git-flight-rules
&
&

https://lostechies.com/joshuaflanagan/2010/09/03/use-gitk-to-understand-git/

& https://lostechies.com/joshuaflanagan/2010/09/03/use-gitk-to-understand-git-merge-and-rebase/

& Use a personal .gitignore file for files that your favorite tool creates
& Use a personal .gitconfig file with aliases for complicated commands

& Experiment — don’t be afraid

& Share with your colleagues — there is more than one way to skin a cat!

https://git-scm.com/
https://github.com/k88hudson/git-flight-rules
https://learngitbranching.js.org/
https://lostechies.com/joshuaflanagan/2010/09/03/use-gitk-to-understand-git/
https://lostechies.com/joshuaflanagan/2010/09/03/use-gitk-to-understand-git-merge-and-rebase/

Well, what about....

& git cherry-pick

¢ git am

¢ git --format-patch
& git email

® and much more stuff I don’t even know exists....

¢ How to work with git?
& git flow

& forks and pull requests

